If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-14t-17.5=0
a = 4.9; b = -14; c = -17.5;
Δ = b2-4ac
Δ = -142-4·4.9·(-17.5)
Δ = 539
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{539}=\sqrt{49*11}=\sqrt{49}*\sqrt{11}=7\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-7\sqrt{11}}{2*4.9}=\frac{14-7\sqrt{11}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+7\sqrt{11}}{2*4.9}=\frac{14+7\sqrt{11}}{9.8} $
| z/2+4=-6 | | 2x+13=x=3 | | -4d-73=87 | | x/(20^2-20*x)=0.05 | | 12x^2+(1/(3x^2))+10(2x+1/3x)+11=0 | | .5x-5=2-7 | | 5p^2-10p+5=0 | | 3x-40=2x+21 | | Z^3-6z^2+9z-3=0 | | 12x^2+1/(3x^2)+10(2x+1/3x)+11=0 | | 1/2x-5=2-7 | | 11m-2m=81 | | (x)/(3)=(x)/(2)-2 | | X+300=1.2x | | .5-3x/5=-11/2 | | -2x+16=5x-8 | | X+300=1,2x | | 3x-33=2x+21 | | -2+5q=-28 | | K^2+4k-16/2k^2-2k+4/k^2=6/k^2 | | 3(4x+5)=3x+12 | | 1/5x+1/2=-3(3/4x+1) | | 2+3x=-6+-5x | | 3x+5x+4-x+7=888 | | -74=-10(1+4x)+2(10-x) | | 2x-6+10=35 | | ((2x^2)+10x+8)(-4x^2)+12x+16=(6x^2)-6x | | 1/x/(50)=25 | | 3a+5(a^2-5(-3))=0 | | (5g+2)-2g=6+2g | | 1/3x(x-20)+40(x-10)=360 | | 5x-x+3=3x+-11 |